Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Res ; 252(Pt 2): 118847, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582427

RESUMO

Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the µM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 µM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.

2.
Gut Microbes ; 16(1): 2297831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165179

RESUMO

The prevalence of inflammatory bowel disease (IBD) is rising globally; however, its etiology is still not fully understood. Patient genetics, immune system, and intestinal microbiota are considered critical factors contributing to IBD. Preclinical animal models are crucial to better understand the importance of individual contributing factors. Among these, the dextran sodium sulfate (DSS) colitis model is the most widely used. DSS treatment induces gut inflammation and dysbiosis. However, its exact mode of action remains unclear. To determine whether DSS treatment induces pathogenic changes in the microbiota, we investigated the microbiota-modulating effects of DSS on murine microbiota in vitro. For this purpose, we cultured murine microbiota from the colon in six replicate continuous bioreactors. Three bioreactors were supplemented with 1% DSS and compared with the remaining PBS-treated control bioreactors by means of microbiota taxonomy and functionality. Using metaproteomics, we did not identify significant changes in microbial taxonomy, either at the phylum or genus levels. No differences in the metabolic pathways were observed. Furthermore, the global metabolome and targeted short-chain fatty acid (SCFA) quantification did not reveal any DSS-related changes. DSS had negligible effects on microbial functionality and taxonomy in vitro in the absence of the host environment. Our results underline that the DSS colitis mouse model is a suitable model to study host-microbiota interactions, which may help to understand how intestinal inflammation modulates the microbiota at the taxonomic and functional levels.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Camundongos , Animais , Colo/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
JHEP Rep ; 6(1): 100930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38149074

RESUMO

Background & Aims: The constitutive androstane receptor (CAR) is a nuclear receptor that binds diverse xenobiotics and whose activation leads to the modulation of the expression of target genes involved in xenobiotic detoxification and energy metabolism. Although CAR hepatic activity is considered to be higher in women than in men, its sex-dependent response to an acute pharmacological activation has seldom been investigated. Methods: The hepatic transcriptome, plasma markers, and hepatic metabolome, were analysed in Car+/+ and Car-/- male and female mice treated either with the CAR-specific agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or with vehicle. Results: Although 90% of TCPOBOP-sensitive genes were modulated in a sex-independent manner, the remaining 10% showed almost exclusive female liver specificity. These female-specific CAR-sensitive genes were mainly involved in xenobiotic metabolism, inflammation, and extracellular matrix organisation. CAR activation also induced higher hepatic oxidative stress and hepatocyte cytolysis in females than in males. Hepatic expression of flavin monooxygenase 3 (Fmo3) was almost abolished and was associated with a decrease in hepatic trimethylamine-N-oxide (TMAO) concentration in TCPOBOP-treated females. In line with a potential role in the control of TMAO homeostasis, CAR activation decreased platelet hyper-responsiveness in female mice supplemented with dietary choline. Conclusions: More than 10% of CAR-sensitive genes are sex-specific and influence hepatic and systemic responses such as platelet aggregation. CAR activation may be an important mechanism of sexually-dimorphic drug-induced liver injury. Impact and implications: CAR is activated by many drugs and pollutants. Its pharmacological activation had a stronger impact on hepatic gene expression and metabolism in females than in males, and had a specific impact on liver toxicity and trimethylamine metabolism. Sexual dimorphism should be considered when testing and/or prescribing xenobiotics known to activate CAR.

4.
BMC Med ; 21(1): 364, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743489

RESUMO

BACKGROUND: Epigenetic age is an estimator of biological age based on DNA methylation; its discrepancy from chronologic age warrants further investigation. We recently reported that greater polyphenol intake benefitted ectopic fats, brain function, and gut microbiota profile, corresponding with elevated urine polyphenols. The effect of polyphenol-rich dietary interventions on biological aging is yet to be determined. METHODS: We calculated different biological aging epigenetic clocks of different generations (Horvath2013, Hannum2013, Li2018, Horvath skin and blood2018, PhenoAge2018, PCGrimAge2022), their corresponding age and intrinsic age accelerations, and DunedinPACE, all based on DNA methylation (Illumina EPIC array; pre-specified secondary outcome) for 256 participants with abdominal obesity or dyslipidemia, before and after the 18-month DIRECT PLUS randomized controlled trial. Three interventions were assigned: healthy dietary guidelines, a Mediterranean (MED) diet, and a polyphenol-rich, low-red/processed meat Green-MED diet. Both MED groups consumed 28 g walnuts/day (+ 440 mg/day polyphenols). The Green-MED group consumed green tea (3-4 cups/day) and Mankai (Wolffia globosa strain) 500-ml green shake (+ 800 mg/day polyphenols). Adherence to the Green-MED diet was assessed by questionnaire and urine polyphenols metabolomics (high-performance liquid chromatography quadrupole time of flight). RESULTS: Baseline chronological age (51.3 ± 10.6 years) was significantly correlated with all methylation age (mAge) clocks with correlations ranging from 0.83 to 0.95; p < 2.2e - 16 for all. While all interventions did not differ in terms of changes between mAge clocks, greater Green-Med diet adherence was associated with a lower 18-month relative change (i.e., greater mAge attenuation) in Li and Hannum mAge (beta = - 0.41, p = 0.004 and beta = - 0.38, p = 0.03, respectively; multivariate models). Greater Li mAge attenuation (multivariate models adjusted for age, sex, baseline mAge, and weight loss) was mostly affected by higher intake of Mankai (beta = - 1.8; p = 0.061) and green tea (beta = - 1.57; p = 0.0016) and corresponded with elevated urine polyphenols: hydroxytyrosol, tyrosol, and urolithin C (p < 0.05 for all) and urolithin A (p = 0.08), highly common in green plants. Overall, participants undergoing either MED-style diet had ~ 8.9 months favorable difference between the observed and expected Li mAge at the end of the intervention (p = 0.02). CONCLUSIONS: This study showed that MED and green-MED diets with increased polyphenols intake, such as green tea and Mankai, are inversely associated with biological aging. To the best of our knowledge, this is the first clinical trial to indicate a potential link between polyphenol intake, urine polyphenols, and biological aging. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03020186.


Assuntos
Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Adulto , Pessoa de Meia-Idade , Metilação de DNA , Envelhecimento/genética , Etnicidade
5.
Gut Microbes ; 15(2): 2259033, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37749878

RESUMO

The Artificial Gravity Bed Rest - European Space Agency (AGBRESA) study was the first joint bed rest study by ESA, DLR, and NASA that examined the effect of simulated weightlessness on the human body and assessed the potential benefits of artificial gravity as a countermeasure in an analog of long-duration spaceflight. In this study, we investigated the impact of simulated microgravity on the gut microbiome of 12 participants during a 60-day head-down tilt bed rest at the :envihab facilities. Over 60 days of simulated microgravity resulted in a mild change in the gut microbiome, with distinct microbial patterns and pathway expression in the feces of the countermeasure group compared to the microgravity simulation-only group. Additionally, we found that the countermeasure protocols selectively increased the abundance of beneficial short-chain fatty acids in the gut, such as acetate, butyrate, and propionate. Some physiological signatures also included the modulation of taxa reported to be either beneficial or opportunistic, indicating a mild adaptation in the microbiome network balance. Our results suggest that monitoring the gut microbial catalog along with pathway clustering and metabolite profiling is an informative synergistic strategy to determine health disturbances and the outcome of countermeasure protocols for future space missions.


The future of spaceflight will involve missions beyond the International Space Station or the Moon and astronaut's health will be challenged by a harsh space environment for longer periods. In the last decade, the intestine has gained importance in dictating overall physiology and we explore it as an additional indicator of health during our ground-based bed rest study simulating microgravity for 60 days. Through the analysis of fecal proteins, we compile the catalog of microbes colonizing the gut of the 12 participants along with the implicated biological activity of the proteins and another 9 lipid analytes. We found specific microbes associated with recovery or healthy status in our subjects to be increased during spaceflight countermeasure conditions and inverse observations in subjects subjected to perilous spaceflight simulation. Our approach improves the functional characterization of the gut by the use of noninvasive methodology correlating the microbial composition of human stool samples with physiological status.


Assuntos
Microbioma Gastrointestinal , Voo Espacial , Ausência de Peso , Humanos , Repouso em Cama , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia
6.
J Hazard Mater ; 458: 132023, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441864

RESUMO

Plastic waste is considered a major threat for terrestrial, marine and freshwater ecosystems. Ingestion of primary or secondary microparticles resulting from plastic degradation can lead to their trophic transfer raising serious health concerns. In this study, the effect of amine and carboxy functionalized polystyrene microparticles on the physiology of daphnids was investigated with a combination of phenotypic and metabolic endpoints. Carboxy functionalized microparticles showed higher toxicity in acute exposures compared to their amine counterparts. Accumulation of both microparticles in animal gut was confirmed by stereo-microscopy as well as fluorescent microscopy which showed no presence of particles in the rest of the animal. Fluorescence based quantification of microparticles extracted from animal lysates validated their concentration-dependent uptake. Additionally, exposure of daphnids to amine and carboxy functionalized microparticles resulted in increased activities of key enzymes related to metabolism and detoxification. Finally, significant metabolic perturbations were discovered following exposure to microplastics. These findings suggest that polystyrene microparticles can hinder organism performance of the freshwater species and highlight the importance of seeking for holistic and physiological endpoints for pollution assessment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Daphnia
7.
Metabolism ; 145: 155594, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236302

RESUMO

BACKGROUND: The capacity of a polyphenol-enriched diet to modulate the epigenome in vivo is partly unknown. Given the beneficial metabolic effects of a Mediterranean (MED) diet enriched in polyphenols and reduced in red/processed meat (green-MED), as previously been proven by the 18-month DIRECT PLUS randomized controlled trial, we analyzed the effects of the green-MED diet on methylome and transcriptome levels to highlight molecular mechanisms underlying the observed metabolic improvements. METHODS: Our study included 260 participants (baseline BMI = 31.2 kg/m2, age = 5 years) of the DIRECT PLUS trial, initially randomized to one of the intervention arms: A. healthy dietary guidelines (HDG), B. MED (440 mg polyphenols additionally provided by walnuts), C. green-MED (1240 mg polyphenols additionally provided by walnuts, green tea, and Mankai: green duckweed shake). Blood methylome and transcriptome of all study subjects were analyzed at baseline and after completing the 18-month intervention using Illumina EPIC and RNA sequencing technologies. RESULTS: A total of 1573 differentially methylated regions (DMRs; false discovery rate (FDR) < 5 %) were found in the green-MED compared to the MED (177) and HDG (377) diet participants. This corresponded to 1753 differentially expressed genes (DEGs; FDR < 5 %) in the green-MED intervention compared to MED (7) and HDG (738). Consistently, the highest number (6 %) of epigenetic modulating genes was transcriptionally changed in subjects participating in the green-MED intervention. Weighted cluster network analysis relating transcriptional and phenotype changes among participants subjected to the green-MED intervention identified candidate genes associated with serum-folic acid change (all P < 1 × 10-3) and highlighted one module including the KIR3DS1 locus, being negatively associated with the polyphenol changes (e.g. P < 1 × 10-4), but positively associated with the MRI-assessed superficial subcutaneous adipose area-, weight- and waist circumference- 18-month change (all P < 0.05). Among others, this module included the DMR gene Cystathionine Beta-Synthase, playing a major role in homocysteine reduction. CONCLUSIONS: The green-MED high polyphenol diet, rich in green tea and Mankai, renders a high capacity to regulate an individual's epigenome. Our findings suggest epigenetic key drivers such as folate and green diet marker to mediate this capacity and indicate a direct effect of dietary polyphenols on the one­carbon metabolism.


Assuntos
Dieta Mediterrânea , Humanos , Polifenóis/farmacologia , Dieta , Obesidade , Chá , Epigênese Genética
8.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835510

RESUMO

Pharmaceutical compounds are among several classes of contaminants of emerging concern, such as pesticides, heavy metals and personal care products, all of which are a major concern for aquatic ecosystems. The hazards posed by the presence of pharmaceutical is one which affects both freshwater organisms and human health-via non-target effects and by the contamination of drinking water sources. The molecular and phenotypic alterations of five pharmaceuticals which are commonly present in the aquatic environment were explored in daphnids under chronic exposures. Markers of physiology such as enzyme activities were combined with metabolic perturbations to assess the impact of metformin, diclofenac, gabapentin, carbamazepine and gemfibrozil on daphnids. Enzyme activity of markers of physiology included phosphatases, lipase, peptidase, ß-galactosidase, lactate dehydrogenase, glutathione-S-transferase and glutathione reductase activities. Furthermore, targeted LC-MS/MS analysis focusing on glycolysis, the pentose phosphate pathway and the TCA cycle intermediates was performed to assess metabolic alterations. Exposure to pharmaceuticals resulted in the changes in activity for several enzymes of metabolism and the detoxification enzyme glutathione-S-transferase. Metabolic perturbations on key pathways revealed distinct groups and metabolic fingerprints for the different exposures and their mixtures. Chronic exposure to pharmaceuticals at low concentrations revealed significant alterations of metabolic and physiological endpoints.


Assuntos
Daphnia , Ecossistema , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Cromatografia Líquida , Daphnia/efeitos dos fármacos , Glutationa/metabolismo , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas em Tandem , Transferases/metabolismo , Poluentes Químicos da Água/metabolismo
9.
Microorganisms ; 10(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296301

RESUMO

Bile acids are crucial for the uptake of dietary lipids and can shape the gut-microbiome composition. This latter function is associated with the toxicity of bile acids and can be modulated by bile acid modifying bacteria such as Eggerthella lenta, but the molecular details of the interaction of bacteria depending on bile acid modifications are not well understood. In order to unravel the molecular response to bile acids and their metabolites, we cultivated eight strains from a human intestinal microbiome model alone and in co-culture with Eggerthella lenta in the presence of cholic acid (CA) and deoxycholic acid (DCA). We observed growth inhibition of particularly gram-positive strains such as Clostridium ramosum and the gram-variable Anaerostipes cacae by CA and DCA stress. C. ramosum was alleviated through co-culturing with Eggerthella lenta. We approached effects on the membrane by zeta potential and genotoxic and metabolic effects by (meta)proteomic and metabolomic analyses. Co-culturing with Eggerthella lenta decreased both CA and DCA by the formation of oxidized and epimerized bile acids. Eggerthella lenta also produces microbial bile salt conjugates in a co-cultured species-specific manner. This study highlights how the interaction with other bacteria can influence the functionality of bacteria.

10.
BMC Med ; 20(1): 327, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175997

RESUMO

BACKGROUND: Mediterranean (MED) diet is a rich source of polyphenols, which benefit adiposity by several mechanisms. We explored the effect of the green-MED diet, twice fortified in dietary polyphenols and lower in red/processed meat, on visceral adipose tissue (VAT). METHODS: In the 18-month Dietary Intervention Randomized Controlled Trial PoLyphenols UnproceSsed (DIRECT-PLUS) weight-loss trial, 294 participants were randomized to (A) healthy dietary guidelines (HDG), (B) MED, or (C) green-MED diets, all combined with physical activity. Both isocaloric MED groups consumed 28 g/day of walnuts (+ 440 mg/day polyphenols). The green-MED group further consumed green tea (3-4 cups/day) and Wolffia globosa (duckweed strain) plant green shake (100 g frozen cubes/day) (+ 800mg/day polyphenols) and reduced red meat intake. We used magnetic resonance imaging (MRI) to quantify the abdominal adipose tissues. RESULTS: Participants (age = 51 years; 88% men; body mass index = 31.2 kg/m2; 29% VAT) had an 89.8% retention rate and 79.3% completed eligible MRIs. While both MED diets reached similar moderate weight (MED: - 2.7%, green-MED: - 3.9%) and waist circumference (MED: - 4.7%, green-MED: - 5.7%) loss, the green-MED dieters doubled the VAT loss (HDG: - 4.2%, MED: - 6.0%, green-MED: - 14.1%; p < 0.05, independent of age, sex, waist circumference, or weight loss). Higher dietary consumption of green tea, walnuts, and Wolffia globosa; lower red meat intake; higher total plasma polyphenols (mainly hippuric acid), and elevated urine urolithin A polyphenol were significantly related to greater VAT loss (p < 0.05, multivariate models). CONCLUSIONS: A green-MED diet, enriched with plant-based polyphenols and lower in red/processed meat, may be a potent intervention to promote visceral adiposity regression. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03020186.


Assuntos
Dieta Mediterrânea , Adiposidade , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal , Polifenóis , Chá , Redução de Peso
11.
Front Microbiol ; 13: 873101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572709

RESUMO

The use of the herbicide glyphosate and its formulations on protein-rich feedstuff for cattle leads to a considerable intake of glyphosate into the rumen of the animals, where glyphosate may potentially impair the 5-enolpyruvylshikimate-3-phosphate pathway of the commensal microbiota, which could cause dysbiosis or proliferation of pathogenic microorganisms. Here, we evaluated the effects of pure glyphosate and the formulations Durano TF and Roundup® LB plus in different concentrations on the fermentation pattern, community composition and metabolic activity of the rumen microbiota using the Rumen Simulation Technique (RUSITEC). Application of the compounds in three concentrations (0.1 mg/l, 1.0 mg/l or 10 mg/l, n = 4 each) for 9 days did not affect fermentation parameters such as pH, redox potential, NH3-N concentration and production of short-chain fatty acids compared to a control group. Microbial protein synthesis and the degradation of different feed fractions did not vary among the treatments. None of the used compounds or concentrations did affect the microbial diversity or abundance of microbial taxa. Metaproteomics revealed that the present metabolic pathways including the shikimate pathway were not affected by addition of glyphosate, Durano TF or Roundup® LB plus. In conclusion, neither pure glyphosate, nor its formulations Durano TF and Roundup® LB plus did affect the bacterial communities of the rumen.

12.
EMBO J ; 40(24): e108542, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34612526

RESUMO

Bacterial small RNAs (sRNAs) are well known to modulate gene expression by base pairing with trans-encoded transcripts and are typically non-coding. However, several sRNAs have been reported to also contain an open reading frame and thus are considered dual-function RNAs. In this study, we discovered a dual-function RNA from Vibrio cholerae, called VcdRP, harboring a 29 amino acid small protein (VcdP), as well as a base-pairing sequence. Using a forward genetic screen, we identified VcdRP as a repressor of cholera toxin production and link this phenotype to the inhibition of carbon transport by the base-pairing segment of the regulator. By contrast, we demonstrate that the VcdP small protein acts downstream of carbon transport by binding to citrate synthase (GltA), the first enzyme of the citric acid cycle. Interaction of VcdP with GltA results in increased enzyme activity and together VcdR and VcdP reroute carbon metabolism. We further show that transcription of vcdRP is repressed by CRP allowing us to provide a model in which VcdRP employs two different molecular mechanisms to synchronize central metabolism in V. cholerae.


Assuntos
Carbono/metabolismo , Toxina da Cólera/metabolismo , Citrato (si)-Sintase/metabolismo , RNA Bacteriano/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Testes Genéticos , Fases de Leitura Aberta , Fenótipo , RNA Bacteriano/metabolismo , Vibrio cholerae/genética
13.
Transl Psychiatry ; 11(1): 500, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599144

RESUMO

The gut microbiome has been speculated to modulate feeding behavior through multiple factors, including short-chain fatty acids (SCFA). Evidence on this relationship in humans is however lacking. We aimed to explore if specific bacterial genera relate to eating behavior, diet, and SCFA in adults. Moreover, we tested whether eating-related microbiota relate to treatment success in patients after Roux-en-Y gastric bypass (RYGB). Anthropometrics, dietary fiber intake, eating behavior, 16S-rRNA-derived microbiota, and fecal and serum SCFA were correlated in young overweight adults (n = 27 (9 F), 21-36 years, BMI 25-31 kg/m2). Correlated genera were compared in RYGB (n = 23 (16 F), 41-70 years, BMI 25-62 kg/m2) and control patients (n = 17 (11 F), 26-69 years, BMI 25-48 kg/m2). In young adults, 7 bacteria genera, i.e., Alistipes, Blautia, Clostridiales cluster XVIII, Gemmiger, Roseburia, Ruminococcus, and Streptococcus, correlated with healthier eating behavior, while 5 genera, i.e., Clostridiales cluster IV and XIVb, Collinsella, Fusicatenibacter, and Parabacteroides, correlated with unhealthier eating (all | r | > 0.4, FDR-corrected p < 0.05). Some of these genera including Parabacteroides related to fiber intake and SCFA, and to weight status and treatment response in overweight/obese patients. In this exploratory analysis, specific bacterial genera, particularly Parabacteroides, were associated with weight status and eating behavior in two small, independent and well-characterized cross-sectional samples. These preliminary findings suggest two groups of presumably beneficial and unfavorable genera that relate to eating behavior and weight status, and indicate that dietary fiber and SCFA metabolism may modify these relationships. Larger interventional studies are needed to distinguish correlation from causation.


Assuntos
Microbioma Gastrointestinal , Estudos Transversais , Fibras na Dieta , Ácidos Graxos Voláteis , Comportamento Alimentar , Humanos , Adulto Jovem
14.
Nutrients ; 13(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070816

RESUMO

BACKGROUND: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa 'Mankai', a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. METHODS: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. RESULTS: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. CONCLUSIONS: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis.


Assuntos
Araceae/metabolismo , Araceae/microbiologia , Dieta Mediterrânea , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolômica/métodos , Polifenóis/sangue , Polifenóis/urina , Adulto , Humanos , Israel , Juglans/metabolismo , Juglans/microbiologia , Espectrometria de Massas , Valor Nutritivo , Polifenóis/administração & dosagem , Chá/metabolismo , Chá/microbiologia
15.
Front Immunol ; 12: 616967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108957

RESUMO

The function of mucosal-associated invariant T (MAIT) cells highly depends on the mode of activation, either by recognition of bacterial metabolites via their T cell receptor (TCR) or in a TCR-independent manner via cytokines. The underlying molecular mechanisms are not entirely understood. To define the activation of MAIT cells on the molecular level, we applied a multi-omics approach with untargeted transcriptomics, proteomics and metabolomics. Transcriptomic analysis of E. coli- and TCR-activated MAIT cells showed a distinct transcriptional reprogramming, including altered pathways, transcription factors and effector molecules. We validated the consequences of this reprogramming on the phenotype by proteomics and metabolomics. Thus, and to distinguish between TCR-dependent and -independent activation, MAIT cells were stimulated with IL12/IL18, anti-CD3/CD28 or both. Only a combination of both led to full activation of MAIT cells, comparable to activation by E. coli. Using an integrated network-based approach, we identified key drivers of the distinct modes of activation, including cytokines and transcription factors, as well as negative feedback regulators like TWIST1 or LAG3. Taken together, we present novel insights into the biological function of MAIT cells, which may represent a basis for therapeutic approaches to target MAIT cells in pathological conditions.


Assuntos
Perfilação da Expressão Gênica , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Metabolômica , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Proteômica , Biomarcadores , Células Cultivadas , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Metabolômica/métodos , Proteômica/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Espectrometria de Massas em Tandem
16.
Sci Total Environ ; 745: 140932, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32731069

RESUMO

Glyphosate is the world's most widely used herbicide, and its potential side effects on the intestinal microbiota of various animals, from honeybees to livestock and humans, are currently under discussion. Pigs are among the most abundant livestock animals worldwide and an impact of glyphosate on their intestinal microbiota function can have serious consequences on their health, not to mention the economic effects. Recent studies that addressed microbiota-disrupting effects focused on microbial taxonomy but lacked functional information. Therefore, we chose an experimental design with a short incubation time in which effects on the community structure are not expected, but functional effects can be detected. We cultivated intestinal microbiota derived from pig colon in chemostats and investigated the acute effect of 228 mg/d glyphosate acid equivalents from Roundup® LB plus, a frequently applied glyphosate formulation. The applied glyphosate concentration resembles a worst-case scenario for an 8-9 week-old pig and relates to the maximum residue levels of glyphosate on animal fodder. The effects were determined on the functional level by metaproteomics, targeted and untargeted meta-metabolomics, while variations in community structure were analyzed by 16S rRNA gene profiling and on the single cell level by microbiota flow cytometry. Roundup® LB plus did not affect the community taxonomy or the enzymatic repertoire of the cultivated microbiota in general or on the expression of the glyphosate target enzyme 5-enolpyruvylshikimate-3-phosphate synthase in detail. On the functional level, targeted metabolite analysis of short chain fatty acids (SCFAs), free amino acids and bile acids did not reveal significant changes, whereas untargeted meta-metabolomics did identify some effects on the functional level. This multi-omics approach provides evidence for subtle metabolic effects of Roundup® LB plus under the conditions applied.


Assuntos
Microbioma Gastrointestinal , Herbicidas/toxicidade , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Humanos , Metaboloma , RNA Ribossômico 16S/genética , Suínos
17.
Exp Clin Endocrinol Diabetes ; 128(6-07): 479-487, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544978

RESUMO

Determination of the levels of thyroid-stimulating hormone (TSH) and free thyroid hormones (fTHs) is crucial for assessing thyroid function. However, as a result of inter-individual genetic variability and different environmental factors individual set points exist for TSH and fTHs and display considerable variation. Furthermore, under specific pathophysiological conditions like central hypothyroidism, TSH secreting pituitary tumors, or thyroid hormone resistance the established markers TSH and fTH fail to reliably predict thyroid function and adequate supply of TH to peripheral organs. Even in case of overt hyper- and hypothyroidism circulating fTH concentrations do not correlate with clinical symptoms. Therefore, there is a clear need for novel, more specific biomarkers to diagnose and monitor thyroid function. OMICs screening approaches allow parallel profiling of hundreds to thousands of molecules and thus comprehensive monitoring of molecular alterations in tissues and body fluids that might be associated with changes in thyroid function. These techniques thus constitute promising tools for the identification of urgently needed novel biomarkers. This mini review summarizes the findings of OMICs studies in thyroid research with a particular focus on population-based and patient studies as well as interventional approaches investigating the effects of thyroid hormone administration.


Assuntos
Biomarcadores/metabolismo , Metaboloma/fisiologia , Proteoma/metabolismo , Doenças da Glândula Tireoide/diagnóstico , Transcriptoma/fisiologia , Humanos
18.
Thyroid ; 30(6): 908-923, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32183611

RESUMO

Background: Pathological conditions of the thyroid hormone (TH) system are routinely diagnosed by using serum concentrations of thyrotropin (TSH), which is sufficient in most cases. However, in certain conditions, such as resistance to TH due to mutations in THRB (RTHb) or TSH-releasing pituitary adenoma (TSHoma), TSH may be insufficient for a correct diagnosis, even in combination with serum TH concentrations. Likewise, under TH replacement therapy, these parameters can be misleading and do not always allow optimal treatment. Hence, additional biomarkers to assess challenging clinical conditions would be highly beneficial. Methods: Data from untargeted multi-omics analyses of plasma samples from experimental thyrotoxicosis in human and mouse were exploited to identify proteins that might represent possible biomarkers of TH function. Subsequent mouse studies were used to identify the tissue of origin and the involvement of the two different TH receptors (TR). For in-depth characterization of the underlying cellular mechanisms, primary mouse cells were used. Results: The analysis of the plasma proteome data sets revealed 16 plasma proteins that were concordantly differentially abundant under thyroxine treatment compared with euthyroid controls across the two species. These originated predominantly from liver, spleen, and bone. Independent studies in a clinical cohort and different mouse models identified CD5L as the most robust putative biomarker under different serum TH states and treatment periods. In vitro studies revealed that CD5L originates from proinflammatory M1 macrophages, which are similar to liver-residing Kupffer cells, and is regulated by an indirect mechanism requiring the secretion of a yet unknown factor from hepatocytes. In agreement with the role of TRα1 in immune cells and the TRß-dependent hepatocyte-derived signaling, the in vivo regulation of Cd5l expression depended on both TR isoforms. Conclusion: Our results identify several novel targets of TH action in serum, with CD5L as the most robust marker. Although further studies will be needed to validate the specificity of these targets, CD5L seems to be a promising candidate to assess TH action in hepatocyte-macrophage crosstalk.


Assuntos
Proteínas Reguladoras de Apoptose/sangue , Fígado/metabolismo , Receptores Depuradores/sangue , Glândula Tireoide/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Biomarcadores/sangue , Macrófagos/metabolismo , Camundongos , Proteômica , Doenças da Glândula Tireoide/genética , Doenças da Glândula Tireoide/metabolismo , Testes de Função Tireóidea , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos/sangue
19.
Rapid Commun Mass Spectrom ; 34(7): e8668, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31961458

RESUMO

RATIONALE: Glyphosate is one of the most widely used herbicides and it is suspected to affect the intestinal microbiota through inhibition of aromatic amino acid synthesis via the shikimate pathway. In vitro microbiome bioreactors are increasingly used as model systems to investigate effects on intestinal microbiota and consequently methods for the quantitation of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in microbiome model systems are required. METHODS: An optimized protocol enables the analysis of both glyphosate and AMPA by simple extraction with methanol:acetonitrile:water (2:3:1) without further enrichment steps. Glyphosate and AMPA are separated by liquid chromatography on an amide column and identified and quantified with a targeted tandem mass spectrometry method using a QTRAP 5500 system (AB Sciex). RESULTS: Our method has a limit of detection (LOD) in extracted water samples of <2 ng/mL for both glyphosate and AMPA. In complex intestinal medium, the LOD is 2 and 5 ng/mL for glyphosate and AMPA, respectively. These LODs allow for measurement at exposure-relevant concentrations. Glyphosate levels in a bioreactor model of porcine colon were determined and consequently it was verified whether AMPA was produced by porcine gut microbiota. CONCLUSIONS: The method presented here allows quantitation of glyphosate and AMPA in complex bioreactor fluids and thus enables studies of the impact of glyphosate and its metabolism on intestinal microbiota. In addition, the extraction protocol is compatible with an untargeted metabolomics analysis, thus allowing one to look for other perturbations caused by glyphosate in the same sample.


Assuntos
Colo/microbiologia , Microbioma Gastrointestinal , Glicina/análogos & derivados , Herbicidas/análise , Compostos Organofosforados/análise , Animais , Reatores Biológicos , Microbioma Gastrointestinal/efeitos dos fármacos , Glicina/análise , Glicina/metabolismo , Herbicidas/metabolismo , Metabolômica , Compostos Organofosforados/metabolismo , Suínos , Espectrometria de Massas em Tandem
20.
Gut Microbes ; 11(4): 1116-1129, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31918607

RESUMO

Diverse intestinal microbiota is frequently used in in vitro bioreactor models to study the effects of diet, chemical contaminations, or medication. However, the reproducible cultivation of fecal microbiota is challenging and the resultant communities behave highly dynamic. To approach the issue of reproducibility in in vitro models, we established an intestinal microbiota model community of reduced complexity, SIHUMIx, as a valuable model for in vitro use. The development of the SIHUMIx community was monitored over time with methods covering the cellular and the molecular level. We used microbial flow cytometry, intact protein profiling and terminal restriction fragment length polymorphism analysis to assess community structure. In parallel, we analyzed the functional level by targeted analysis of short-chain fatty acids and untargeted metabolomics. The stability properties constancy, resistance, and resilience were approached both on the structural and functional level of the community. We show that the SIHUMIx community is highly reproducible and constant since day 5 of cultivation. Furthermore, SIHUMIx has the ability to resist and recover from a pulsed perturbation, with changes in community structure recovered earlier than functional changes. Since community structure and function changed divergently, both levels need to be monitored at the same time to gain a full overview of the community development. All five methods are highly suitable to follow the community dynamics of SIHUMIx and indicated stability on day five. This makes SIHUMIx a suitable in vitro model to investigate the effects of e.g. medical, chemical, or dietary interventions.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos , Microbioma Gastrointestinal , Intestinos/microbiologia , Bactérias/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Metabolômica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...